Foam dynamics in the presence of oil during multiphase flow in porous rock
Foam injection is a promising method to increase oil recovery in mature oil
fields because it can overcome the limitations of conventional gas injection
by significantly reducing the mobility and improve sweep efficiency. It is
economic because later gas breakthrough leads to less gas production and
reduced costs related to gas recycling and re-injection. Reservoir simulation
models describe foam behaviour with parameters that are difficult to measure
in core-flooding experiments. For example, foam mobility depends on gas
bubble density, which changes through bubble generation and coalescence
events on the pore scale. A further complication is that foam mechanisms
and film stability generally are different in the presence of oil, as shown
in experiments. Thus, reservoir simulators rely heavily on fitting foam
parameters to core-scale floods before their use. In this project, we will
develop and use mathematical methods to investigate multiphase foam flow
on the pore scale with a detailed description of the mechanisms for foam film
stability and rupture. The project will conduct new pore-scale micromodel
experiments to validate and calibrate the modelling approach. We will
use the developed methods on segmented 3D rock images to understand
and quantify the effect of oil on foam flow in porous rock. Efforts to model
foam with oil present on pore scale are missing in the scientific literature,
yet it is an essential part to improve our understanding of foam and make
reservoir simulations with foam reliable. From pore-scale simulations, we
will determine foam stability and texture, foam generation and coalescence rates, trapped gas fractions, limiting capillary pressure for foam coalescence,
relative permeability curves, and hysteresis effects, to investigate foam
mobility reduction with and without oil present. The outcome will be a better
understanding of foam dynamics in porous rock, which allows a more
accurate foam representation in reservoir simulations.
Project facts
Name
Foam dynamics in the presence of oil during multiphase flow in porous rock
Status
CONCLUDED
Duration
01.04.19 - 30.06.23
Total budget
10.384.000 NOK